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The development of wind energy on the US Northeast Continental Shelf (NES) may preclude resource-monitoring programmes from continuing
in their original study designs. We considered the spatial requirements of energy developers and the spatial autocorrelation of resident species as
a means to inform survey mitigation. The spatial requirements of the NES wind industry were considered in respect to the delineation of settled
lease areas. We suggest access metrics ranging from 8 to 21 km representing the interquartile range of chord distances across the settled
lease areas. Using survey data and concentrating on commercial species with stock assessment requirements, we computed indices of spatial
autocorrelation. Tests of spatial autocorrelation using Moran'’s /and join counts statistics were significant (p < 0.05) for most species, suggesting
a high level of spatial correlation in their distributions. To characterize a scalar extent of spatial correlation, variograms were fit to estimate the
physical range of correlated catches. These data suggest most species were spatially correlated well beyond the distance metrics derived from
the lease area shapes. Sampling by a range of gears has the potential of producing spatially accurate depictions of species distributions and

abundance despite the restrictions wind lease areas may place on sampling designs.
Keywords: fish distribution, fisheries, spatial correlation, survey design, wind energy.

Introduction

In efforts to reduce global greenhouse gas loadings, there is
expanding interest in renewable alternatives to fossil fuels.
Notable among these efforts is the development of offshore
wind energy, owing to the consistent movement of air over
ocean domains, thus making offshore wind a relatively reli-
able source of energy (Li et al., 2020). Large-scale offshore
wind construction projects create many and often complex
user interactions (Copping et al., 2020). Among these inter-
actions, offshore wind development can have direct effects on
the ecosystem (Galparsoro et al., 2022) at the organismal level
(e.g. bird kills) or system level effects through habitat modi-
fications (e.g. change in lower trophic level production). In a
broader sense, these activities affect maritime commerce and
food security (Qu et al., 2021). The development of Wind En-
ergy Areas (WEAs) not only alters patterns of harvest related
to food security, but key to the maintenance of food security
is the ability to monitor the condition of resource species. We
anticipate our ability to monitor resource species will be im-
pacted via constraints on surveys caused by WEAs (Methratta
et al., 2020). Evidence from other types of management clo-
sure areas suggests that harvesters will continue to exploit mo-
bile species on the perimeters of such areas and we anticipate
that harvesters will find ways to operate in WEAs with ac-
ceptable safety levels (Schupp et al., 2021). Hence, regulatory
agencies will still have a statutory responsibility of provid-
ing assessment and management advice for these resources via
fishery-independent surveys.

Fishery-independent surveys are conducted by research
vessels or contracted commercial fishing vessels. To ensure
long-term comparability of relative abundance estimates, all
vessels adhere to a rigid sampling protocol, strictly monitor
gear performance, and most importantly, take steps to select
stations randomly (Latour et al., 2003). Randomization
of station selection is important because it allows one to
make inferences about the total population, which consists
of sampled and unsampled locations. When the sampling
design encompasses multiple habitats, refinements of the
survey designs can be achieved by dividing the sampling
area into strata. Ideally, strata reduce the overall variance of
the estimate by having greater similarities in abundance or
species compositions within strata than between strata. Taken
collectively, these factors have made stratified random designs
the de facto standard for fishery-independent surveys around
the world (Doubleday, 1981). However, a given realization of
a stratified random design can result in very poor estimates
if the stratification is inappropriate or if stations are under-
or over-allocated to strata (Cochran, 1991). Random stations
can exhibit undesirable sampling properties of being either
too close together or too far apart. The former is less efficient
because nearby samples may not be independent and the
latter condition results in an over reliance of a single sample
representing a very large area (Gunderson, 1993).

The introduction of WEAs into a sampling framework up-
sets the delicate balance of stratification and spatial alloca-
tion of samples. If the WEA cannot be sampled, the sizes and

Received: 24 March 2023; Revised: 20 July 2023; Accepted: 23 September 2023
Published by Oxford University Press on behalf of International Council for the Exploration of the Sea 2023. This work is written by (a) US Government

employee(s) and is in the public domain in the US.

£20Z JaquiaAoN z0 uo 1sanb Aq 0Z0.EE///91pesl/swisaol/c60 L 01 /10p/aonie-adueApe/swisaol/wod dno olwapeoe//:sdny wolj papeojumoq


https://orcid.org/0000-0003-3887-0186
https://orcid.org/0000-0002-4984-7275
https://orcid.org/0000-0003-0109-913X
https://orcid.org/0000-0002-0854-2723
https://orcid.org/0000-0003-3664-074X
mailto:kevin.friedland@noaa.gov

configurations of strata are compromised and station alloca-
tions, whatever their basis, must be changed (Gill et al., 2020).
Most importantly, the critical design-based attribute, wherein
every element in the sampling frame has a non-zero inclusion
probability is now invalid. Variances are likely to increase and
estimates of the mean will be biased unless it can be shown
that samples outside of the WEA can be used to make valid
inferences about the conditions inside the WEA. This paper
addresses this central problem by using models to characterize
the spatial correlations among samples. These correlations can
be distilled into practical metrics of distances that define the
physical range over which a sample can be assumed to be rea-
sonably similar. In other words, a future survey design might
include both design and model-based properties (Dumelle et
al., 2022).

The validity of this hybrid design (Brus, 2021) rests on the
principle that the correlative properties of samples estimated
in the absence of WEAs are still appropriate after the WEA
are developed. This is unknowable a priori. Detailed habitat
studies have demonstrated differences in benthic invertebrate
communities relative to controls following turbine installa-
tion, but not all fish species will be affected equally (Franco
et al., 2015). Fish that transit WEAs rapidly are less likely to
be affected than species with affinity to the altered bottom
structure and food resources. Hence, it is important to exam-
ine a range of species to help predict the utility of model as-
sisted sampling designs (Di Biase et al., 2022). In this paper,
we use the term “adapted surveys” to denote survey designs
that augment more traditional designs with information on
the spatial autocorrelation properties of fish species. Desirable
properties of such future designs are described, but the full
sampling properties of such designs are the subject of ongoing
research.

Systematic sampling designs have desirable properties of
ensuring uniform coverage over the geographic range of the
survey domain (Brus and de Gruijter, 1997). Strictly speaking,
such designs do not have design-based variances because most
of the potential samples have zero inclusion probabilities. Sys-
tematic sampling designs might be considered as a subset of
spatially balanced designs (Van der Meer, 1997; Benedetti et
al., 2017). Recent theoretical advances (Stevens and Olsen,
2004) have led to designs that have both the advantages of sys-
tematic coverage and design-based variance estimation. In this
paper, we illustrate the spatial properties of samples that could
govern the allocation of stations over a geographic domain
with a focus on its utility for imputing abundances within ar-
eas that cannot be sampled.

One aspect of marine fish and macroinvertebrate ecology
that may serve to make adaptive survey designs feasible is
that their distributions tend to be spatially autocorrelated.
The ecology of fish distribution has received a great deal of
recent attention due to distributional responses of fish to cli-
mate change (Taheri et al., 2021). The distribution of fish is
complex owing to species interactions, both competitive and
predatory, life stage effects, and reproductive requirements
(Ciannelli et al., 2008). Inference concerning spatial corre-
lation has been made based on catch data to describe dis-
tributional clusters in both time and space (Vignaux, 1996).
These catch clusters suggest spatial correlation on the order
of 20 km in New Zealand hoki (Macruronus novaezelandiae).
Using models to describe spatial correlation with distance for
groundfish species (cod, Gadus morhua, haddock, Melanogra-
mus aeglefinus), Marquez et al. (2021) drew contrasts in the
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spatial correlation for species by life stage. Not surprisingly,
variograms fit to the distribution of tuna and billfish species
suggested many large pelagic species have spatial correlations
in excess of 100 km (Kleisner et al., 2010). With a rich prece-
dent in the literature of both results and methodological ap-
proaches, it should be relatively straightforward to estimate
these parameters for a broad spectrum of commercial species
that are routinely captured in scientific surveys.

The strategies used to allocate offshore WEAs take into ac-
count maritime access, so consequently, wind developments
are large in the aggregate, but individual WEAs tend to be
sized on scales that are more reasonable. The primary fac-
tor used to site WEAs, both in offshore and terrestrial envi-
ronments, is the distribution of wind speed and air density
(Rediske et al., 2021). Furthermore, a wide range of spatial
planning issues are considered, especially maritime transport
access (Caceoglu et al., 2022). Fundamental differences in the
space of operation requirements between terrestrial and mar-
itime transport, i.e. trucks vs. ships, ultimately limit the size of
lease areas because transit by a wide range of ship types and
classes must occur between the boundaries of adjacent WEAs.
Though the intention is to insure safe seafood harvest within
WEAs (Perry and Heyman, 2020), spacing between structures
of 1-2 km or less may preclude operation of large fishing ves-
sels using active gear in these areas.

The goal of this study was to examine the spatial autocorre-
lation of populations of commercially harvested and assessed
fish and macroinvertebrates in the US Northeast Continental
Shelf (NES) ecosystem in context to the dimensionality of indi-
vidual and accessible WEAs. The physical dimensions of the
wind lease areas, distinguished from interest and call areas,
were analysed to determine the range of sizes from naviga-
ble edge to distances across the area. Species with assessments
that include the use of bottom trawl data were analysed using
historical data to determine the tendency for distribution to be
spatially autocorrelated and to affix a distance measure to that
correlation using spatial statistics. Our goal was to generalize
the tradeoffs between station spacing and the spatial corre-
lation among trawl species catch; hence, providing a tool to
evaluate survey mitigation strategies.

Methods

Study system

This study was based on survey observations and WEA ac-
tivities in the NES. Survey observations refer to the long-term
bottom trawl-monitoring programme for fish and macroin-
vertebrates used to guide fisheries and ecosystem manage-
ment. WEA activities refer to the emergent development of
wind power in the form of wind turbines within the ecosys-
tem. The Northeast Fisheries Science Center bottom trawl
survey (Desprespatanjo et al., 1988) is conducted annually
in the spring and autumn seasons, and consists of ~300 or
more stations sampled per season. This random stratified sur-
vey started in 1963 in autumn and 1968 in spring, and sam-
ples areas off the coast of North Carolina to Nova Sco-
tia; the full spatial extent of station locations are shown in
Supplementary Figure S1 in the Supplementary Material. The
study domain was sometimes expanded with extended station
coverage south of Cape Hatteras (south of 35°N). We con-
strained the analysis of the trawl data to the core strata of
the survey shown in Supplementary Figure S1. Over time, a
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Figure 1. The US Northeast Shelf with decided lease areas (blue) and
interest areas (red) being considered for wind energy development. The
dashed line marks the 100-m depth contour.

number of changes in trawl gear, vessels, and trawl doors oc-
curred. Each of these changes was accompanied by field exper-
iments to adjust new observations to the historical time series
(Desprespatanjo et al., 1988). The largest change occurred in
2008 when the survey changed to a much larger vessel (FSV
Bigelow). The effects of this shift were fully calibrated as de-
scribed in Miller et al. (2010). The transition to the Bigelow
further reduced the spatial domain of the survey because
shallower inshore stations could no longer be safely sam-
pled. Survey activities were disrupted by the COVID-19 epi-
demic in 2020, so we restricted our analyses to years prior to
2020.

The NES is also a leading region for the development of
offshore wind energy in the United States, with many wind
lease areas already identified. Procedurally, the development
of lease areas is preceded by the identification of call and in-
terest areas that may eventually provide the basis for lease ar-
eas. The boundaries for these areas are rapidly changing and
as of the writing of this paper, based on data for March 2023,
there are nearly 30 call and interest areas, with some overlap-
ping areas, and 26 lease areas (Figure 1). As can be seen in the
map, call and interest areas tend to be larger than what even-
tually emerge as a lease area. Multiple factors go into the des-
ignation of a lease area, but currently, lease areas have at least
one side that is open to navigation. The current lease areas
are listed in Table 1 along with their areal coverage in square
kilometers. The areas range from ~9 to 586 km?; however,
the shapes vary from rectangular to triangular. To character-
ize the size of the lease areas, we calculated a family of chord
distances across an area based on all combinations of vertices
of the outline shape. Depending on the complexity of the lease
area shape, the number of chords ranged from 72 to 43056.
The distribution of the chord distances was summarized with
the median and lower and upper quartiles. The means of these
statistics, 8, 14, and 21 km, were use as benchmark distances
to evaluate the spatial statistics calculated from the bottom
trawl survey.

Measures of spatial correlation in the survey catch

We characterized the spatial correlation pattern in the sur-
vey catches (abundance or catch in numbers) of each fish and
macroinvertebrate species for each year and season (spring
and autumn), restricting the analysis to managed species that
utilize the bottom trawl survey data for their assessments
(Table 2). In a practical sense, some species are well repre-
sented in the survey and the data serve as a major part of the
assessment; whereas, some species are rare occurrences in the
survey and thus, the survey plays a minor role. To test for spa-
tial autocorrelation, we calculated Moran’s Index (Moran’s
I) of global autocorrelation (Gittleman and Kot, 1990) using
the “ape” package in R (version 5.7). For each species, we
computed Moran’s I by year and season and summarized the
statistic as the proportion of years with significant values (sig-
nificance at p = 0.05). Significant and positive tests led to re-
jection of the null hypothesis that the underlying distribution
was random and supported the hypothesis of spatial cluster-
ing. We also examined spatial correlation among the absence
and presence data for each species using join count tests (Sokal
and Oden, 1978). Absence or presence was coded into each
data record as a factor and the test statistic was calculated
using the “spdep” package in R (version 1.2-8). The statistic
tested for spatial autocorrelation between absences and pres-
ences in the data; we concentrated on the results of presence
tests.

We used a Kriging interpolation procedure to estimate the
distance over which catch was correlated for each species. For
species by year and season, we fit a variogram and used the
range from the fit as an estimate of the linear distance of
catch correlation. We first specified the variogram as the log-
arithm of catch plus one (to account for zero catch) using the
“gstat” package in R (version 2.0-9). We then used the var-
iogram fitting procedure, also in “gstat”, that fit Kappa and
selected the best fit variogram model (Pebesma, 2004). For
some species and years, there were range estimates from the
variogram fits that were off scale and had to be considered
outliers. These values were identified using the boxplot com-
mand in R base graphics; they were excluded from the data
summaries. The range estimates were characterized as means
and quantile summaries (10-90% quantiles, 25-75% quan-
tiles, and median) by species and season.

Putative interaction of sample grid size and range
correlation

The effect of putative grid size and correlation distance were
considered simultaneously by mapping grids at two spacings
and evaluating the effect of the grids by overlaying circles with
varying diameters based on different correlation lengths. We
considered two grid spacings, 0.333 and 0.5°, with the for-
mer at approximately the same spacing as the trawl stations
in the current bottom trawl survey and resulting in ~290 sta-
tions in a seasonal survey. The latter represents a relaxation
of survey station spacing and would likely result in ~120
trawl stations over the survey area. However, we believe a re-
laxed survey may be necessitated if spatial access is restricted
by WEA development. For each of the spacing scenarios, cir-
cles were added at the grid locations with diameters of 10,
20, 30, and 40 km meant to simulate the extent of species
catch correlation. The intention here is to generalize the
tradeoffs between station spacing and the spatial correlation
among trawl species catch; hence, developing a set of tools to
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Table 1. List of US Northeast Shelf wind energy lease areas shown in Figure 1 with their areas, and medians (50%) and quartile intervals (25 and 75%)
of the chord lengths of the lease area shapes.

Chord length
Area 25% 50% 75%

Project km? km km km
Bay State Wind LLC 586 11 19 31
Vineyard Northeast LLC 536 9 16 25
Beacon Wind LLC 522 12 17 26
SouthCoast Wind Energy LLC 516 12 17 26
Community Offshore Wind, LLC 510 11 18 23
Avangrid Renewables, LLC 495 9 17 27
Virginia Electric and Power Company 457 8 15 23
Sunrise Wind, LLC 445 9 15 24
Atlantic Shores Offshore Wind Projects 1 & 2, LLC’s 413 9 16 21
Park City Wind LLC 411 10 16 22
Orsted North America Inc. 344 5 10 14
Attentive Energy LLC 341 9 14 19
Invenergy Wind Offshore LLC 340 10 14 20
Revolution Wind, LLC 339 8 13 19
Atlantic Shores Offshore Wind, LLC 328 8 15 25
US Wind Inc. 323 9 14 19
Atlantic Shores Offshore Wind Bight, LLC 321 9 15 20
Empire Offshore Wind, LLC 321 9 16 25
Ocean Wind LLC 306 7 13 18
Bluepoint Wind, LLC 289 8 14 18
GSOE I, LLC 284 8 14 17
Vineyard Wind 1 LLC 264 7 14 17
Mid-Atlantic Offshore Wind LLC 174 7 10 14
Skipjack Offshore Energy, LLC 107 5 8 11
South Fork Wind, LLC 55 3 S 7

Cmlth of Virginia, Dept. of Mines, Minerals, and Energy 9 5 16 29
Mean 347 8 14 21

Table 2. List of species that to some measure rely on bottom trawl survey data in their assessment process, SVSPP code is the primary database code

used in the trawl database and is provided to facilitate species identification in other figures.

SvSpp SvSpp

Common name Scientific name Code Common name Scientific name Code
Spiny dogfish Squalus acanthias 15 Witch flounder Glyptocephalus cynoglossus 107
Barndoor skate Dipturis laevis 22 Windowpane flounder Scophthalmus aquosus 108
Winter skate Leucoraja ocellata 23 Atlantic mackerel Scomber scombrus 121
Clearnose skate Raja eglanteria 24 Butterfish Peprilus triacanthus 131
Rosette skate Leucoraja garmani 25 Bluefish Pomatomus saltatrix 135
Little skate Leucoraja erinacea 26 Black sea bass Centropristis striata 141
Smooth skate Malacoraja senta 27 Scup Stenotomus chrysops 143
Thorny skate Amblyraja radiata 28 Golden tilefish Lopbholatilus chamaeleonticeps 151
Atlantic herring Clupea harengus 32 Acadian redfish Sebastes fasciatus 155
Alewife Alosa pseudoharengus 33 Atlantic wolffish Anarhichas lupus 192
Blueback herring Alosa aestivalis 34 Ocean pout Zoarces americanus 193
American shad Alosa sapidissima 35 Monkfish Lophius americanus 197
Silver hake Merluccius bilinearis 72 American lobster Homarus americanus 301
Atlantic cod Gadus morhua 73 Northern shrimp Pandalus borealis 306
Haddock Melanogrammus aeglefinus 74 Deep sea red crab Chaceon quinquedens 310
Pollock Pollachius virens 75 Jonah crab Cancer borealis 312
White hake Urophycis tenuis 76 Atlantic sturgeon Acipenser oxyrinchus oxyrinchus 380
Red hake Urophycis chuss 77 Atlantic sea scallops Placopecten magellanicus 401
Cusk Brosme brosme 84 Atlantic surfclam Spisula solidissima 403
Atlantic halibut Hippoglossus hippoglossus 101 Ocean quahog Arctica islandica 409
American plaice Hippoglossoides platessoides 102 Illex squid Illex spp. 502
Summer flounder Paralichthys dentatus 103 Longfin squid Doryteuthis (Amerigo) pealeii 503
Yellowtail flounder Limanda ferruginea 105 Blueline tilefish Caulolatilus microps 621
Winter flounder Pseudopleuronectes americanus 106
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Table 3. The number of years in which there were sufficient data to estimate a variogram range (Range, which is also the number of years Moran's / test

was estimated) for each study species.

Spring Autumn
Join Count Join Count
SVSPP Range Outliers Absence  Presence Range Outliers Absence  Presence

15 52 49 52 52 57 51 57 57
22 44 40 44 38 50 47 50 44
23 52 52 52 52 57 57 57 57
24 48 47 48 48 52 51 52 51
25 51 42 51 46 57 52 57 55
26 52 50 52 52 57 55 57 57
27 52 48 52 52 57 52 57 57
28 52 50 52 52 57 54 57 57
32 52 43 52 52 57 54 57 57
33 52 46 52 52 57 51 57 57
34 52 46 52 52 55 48 55 52
35 52 42 52 52 57 50 57 57
72 52 47 52 52 57 47 57 57
73 52 50 52 52 57 56 57 57
74 52 46 52 52 57 55 57 57
75 52 43 52 52 57 50 57 57
76 52 50 52 52 57 53 57 57
77 52 49 52 52 57 49 57 57
84 52 51 52 52 57 56 57 57
101 52 45 52 51 56 45 56 54
102 52 49 52 52 57 46 57 57
103 52 45 52 52 57 50 57 56
105 52 51 52 52 57 53 57 57
106 52 48 52 52 57 55 57 57
107 52 50 52 52 57 52 57 57
108 52 51 52 52 57 57 57 57
121 52 47 52 52 57 51 57 56
131 52 44 52 52 57 47 57 57
135 40 39 40 34 54 49 54 52
141 52 48 52 52 56 46 56 55
143 52 45 52 52 57 49 57 57
151 35 29 35 26 31 26 31 14
155 52 52 52 52 57 54 57 57
192 52 44 52 50 56 50 56 54
193 52 48 52 52 57 51 57 57
197 52 47 52 52 57 51 57 57
301 52 46 52 52 57 53 57 57
306 31 28 31 31 40 40 40 39
310 41 35 41 41 51 46 51 45
312 49 44 49 44 49 44 49 48
380 | 32 26 32 18 10 9 10 4
401 52 48 52 52 57 56 57 57
409

502 52 46 52 52 57 53 57 57

503

52 48 52 52 57 49 57 56
60 8 7 8 5 10 10 10 6

The number of years of range data after outlier removals (Outliers). Number of years a Join Count estimate of absences and presents could be estimated
(Absence and Presence, respectively). Shading added to emphasize range in values.

evaluate survey adaptation and mitigation of encroachment
issues. To add further context, these putative grids were over-
laid on the currently established lease areas to illustrate the
feasibility of rudimentary gridded survey designs.

Results

Performance statistics for species

Measures of spatial correlation for each species were esti-
mated over all the years and seasons of the bottom trawl

survey time series. The combined total for both seasonal sur-
veys was 109 years and for 47 taxa resulting in 5123 sta-
tistical estimates (Table 2). In the spring, only 35 of the 47
species had sufficient data to calculate the indices in all 52
years of the spring time series; that figure is even lower in
the autumn where 32 species had sufficient data in the 57-
year time series (Table 3). Data availability issues primarily
affected Atlantic surfclam (Spisula solidissima), Ocean qua-
hog (Arctica islandica), and Blueline tilefish (Caulolatilus mi-
crops), none of which are effectively sampled by the bottom
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Figure 2. The distribution of annual Moran's / test statistics sorted by species based on the mean of spring and autumn significant positive test results
for spring (a) and autumn (b). Blue symbols indicate significant tests; red symbols indicate non-significant tests.

trawl gear. It is worth noting that surfclam is the subject of
another dedicated survey. Of those season and species com-
binations, ~9% of the data were eliminated as outliers with
values generally ranging between 0 to 11 years eliminated for
a given taxon.

Moran's |

For most species, Moran’s [ was significant and positive in
value in the majority of survey years, indicating a tendency
for the distribution of species to be spatially autocorrelated.
In most years, there were sufficient data to calculate Moran’s
I, notably there were low numbers of years for Atlantic sur-
fclam, ocean quahog, and blueline tilefish (Table 3). Overall,
in spring, only 8% of the Moran I statistics were negative
in sign, and of those negative tests, only 8% were significant
(Figure 2a). The balance of the test statistics were positive
in sign and among these tests, 93% were significant. The
statistics were patterned similarly in the autumn where 9%
of the tests were negative, of which 4% were significant tests,
whereas among positive test statistics, 94% were significant
(Figure 2b). The preponderance of significant positive test

statistics in both seasons suggest most species distribute with
positive spatial autocorrelation; however, noting that for
some species the sample size is inadequate to come to any
conclusion.

Join count test

The join count test for spatial autocorrelation among presence
locations for the survey species indicated a tendency towards
spatial autocorrelation. In spring, 93% of the join tests for
presence spatial autocorrelation were significant (Figure 3a).
The non-significant tests were distributed over a number of
species. Of the taxa with a high proportion of non-significant
tests (Deep sea red crab, ocean quahog, blueline tilefish, At-
lantic sturgeon, and Atlantic surfclam), only red crab had test
statistics for most years of the time series. In autumn, the per-
centage of significant tests was the same as in spring, 93%
(Figure 3b). Similar to the spring, those species with a high
proportion of non-significant tests are the same as the spring
with the addition of Golden Tilefish and the only taxon with
a test statistic in most years was red crab. Using a contrasting
approach to Moran’s I, the join count statistics also indicate
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tests.

a high degree of spatial autocorrelation among species distri-
butions.

Variogram range

Estimates of variogram range generally exceeded the measures
of access to the lease areas based on the distribution of lease
area chord distances. The mean of the range estimates over
the study period by species spanned values from 46 to 702 km
(Figure 4). The rank ordering of the means suggest the small-
est ranges were realized for sea scallops (Placopecten magel-
lanicus) at 58 and 48 km for the spring and autumn survey,
respectively. The highest ranges were observed for ocean qua-
hog at 85 and 702 km for the spring and autumn survey, re-
spectively. Over all taxa, all mean range estimates exceeded the
upper quartile of chord lengths of 21 km by at least a factor of
two. The lower extent of the confidence intervals of range esti-
mates were <21 km for three taxa including blueline tilefish in
the spring and Atlantic surfclam and ocean quahog in the au-
tumn. These data generally had right-hand skewness in their
distribution, hence, the mean tended to be much greater than
the median. To address this issue, the range data were also
presented as quantiles and median scores. In the spring, the

medians of range spanned 18 to 284 km, which is markedly
less than suggested by the mean of the ranges (Figure 5).
Though the medians met or exceeded the chord distance
benchmarks, many species had 10-90 and 25-75% quantile
ranges that were less than these reference distances. A simi-
lar result was realized with the autumn data, with the median
spanning values from 17 to 306 km and many species with
quantile ranges below the reference distances (Figure 6). The
performance of some species was not equivalent between sea-
sons. For example, the lowest autumn median was observed in
Atlantic surfclam; however, in spring, surfclam had a median
of 52 km, noting that this species is not well sampled by the
survey gear. In other taxa, some of which were specifically tar-
geted by the trawl gear, seasonal medians were consistent; for
example, the spring median for Atlantic cod (Gadus morhua)
was 88 km vs. an autumn median of 100 km.

Putative interaction of sample grid size and range
correlation

The interactive effects of sample grid spacing and the likely
spatial coverage of samples suggested some general principles
that may be helpful in the consideration of a wide variety of
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resource monitoring approaches. We selected a sampling grid
at a spacing of 0.333° that approximates the station density
of the current bottom trawl survey. With this grid spacing, if
capture at a grid location has a spatial correlation of at least
20 km, the grid results in overlapping effectiveness of neigh-
bouring samples. This statement is supported by comparing
the coverages over a 0.333° grid given spatial correlation dis-
tances of 10, 20, 30, and 40 km (Figure 7a). With a sampling
grid spaced at 0.5°, the spatial correlation assumed for species
would have to be closer to 30 km to achieve a similar level of
sample coverage and station overlap (Figure 7b). Given the
range estimates for the species considered in this study, either
grid spacing would seem to offer a viable alternative for data
collection by trawl gear or other types of survey telemetry.
Hence, for a putative sampling grid of 0.333°, there is suffi-
cient spacing suggested by the lease areas designated thus far
to locate extra-lease area sampling within each grid member
(Figure 7¢). This is also true for a sample grid of 0.5°, afford-
ing even greater flexibility for the location of survey stations.
This rudimentary exercise suggests the potential feasibility for
a grid design with the requirement of one sample per grid
square, either assigned in a fixed location or with some de-
gree of randomization.

Discussion

The range or distance of survey catch correlation as char-
acterized with variogram model fits suggests spatial correla-
tion far exceeds the general dimensions of offshore WEAs for
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Figure 5. Spring variogram ranges plotted over 10-90% quantiles (light
red), 25-75% quantiles (dark red), and medians (black line) sorted by
range median. Range references of 8, 14, and 21 km (mean of quartile
statistics of lease area chord distances) are added as dashed lines.

species dependent on bottom trawl data for assessment pur-
poses. This suggests that sampling in proximity to the WEAs
may be a suitable substitute indicative of the WEA habitat
for species with high spatial autocorrelation. Underlying this
general conclusion is the idea that species have patch size dy-
namics associated with their distribution (Jentsch and White,
2019). These patch-sizes can be relatively small or localized to
fine scale physical structures (Deza and Anderson, 2010), or
exist over relatively large ocean domains (Filous et al., 2022).
Our estimates of spatial autocorrelation suggest a range of
patch sizes for the study species of tens to over 100 km, which
may be limited by the extents of the survey area itself. If other
regions were included in the sampling range, many taxa pre-
sented here may have a larger range of spatial correlation. For
example, it is likely that haddock would have a much larger
range of correlation due to their distribution in Canadian wa-
ters if the Scotian Shelf were included as part of the study
area. Though the basis of our conclusions concerning spatial
correlation may, if anything, be conservative, they would ap-
pear to be more than adequate to address the issues raised in
the analysis concerning the spatial scales of wind field sample
exclusion and species catch correlation.

We anticipate two spatial scales of habitat alteration caused
by WEA development. At the local scale of tens to hundreds
of metres, benthic habitat modification is expected at the base
of turbines, in the scour protection zone, and surrounding
sediments. Altered patterns of sediment organic content, ben-
thic community composition, and finfish community structure
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Figure 6. Autumn variogram ranges plotted over 10-90% quantiles (light
red), 25-75% quantiles (dark red), and medians (black line) sorted by
range median. Range references of 8, 14, and 21 km (mean of quartile
statistics of lease area chord distances) are added as dashed lines.

have been observed at this scale in Europe where installations
have been in place for many years (Coates et al., 2014; De-
graer et al., 2020; Buyse et al., 2022; Coolen et al., 2022).
Effects of electromagnetic fields (EMFs), chemical contam-
inants, construction and operational noise, substrate vibra-
tion, particle motion, and entrainment within offshore cool-
ing substations also emerge at this scale (Kirchgeorg et al.,
2018; Hutchison et al., 2020; Mooney et al., 2020; Tougaard
et al., 2020; Hawkins et al., 2021). It is important to remem-
ber that many frequently caught species orient to structures
like a wind tower foundation. Black Sea Bass (Centropristis
striata) are known to orient to other structures in the NES en-
vironment (wrecks and artificial reefs). To characterize these
sorts of changes, specific assessments are needed to address
the newly created habitat. Gears such as bottom trawls have
limited utility in monitoring these habitats; instead, point ob-
servations such as video or those made using scuba would be
required.

Mesoscale effects in the water column caused by turbulence
associated with the structures as well as interactions between
atmospheric wind wake and physical oceanography processes
are also anticipated (Dorrell et al., 2022). These interactions
may affect primary productivity, transparency, thermal distri-
bution, larval distribution, etc. and would operate over scales
of tens of kilometres, thus extending beyond the boundaries
of wind energy projects (Christiansen et al., 2022; Daewel et
al., 2022). These latter effects form the basis for any ratio-
nale to apply the findings made in this study; since the range

of spatial correlation exceeds the chord distances of WEA
access, sampling by any gear should have relevance beyond
the constraints created by any wind field sample exclusions.

Given the spacing of wind energy towers, we know that
the bottom trawl survey vessels currently in use, such as the
FSV Henry B. Bigelow, will be unable to operate within WEAs
(Hare et al., 2022). Smaller trawl survey vessels operated by
state and federal agencies or other groups may be able to con-
tinue to sample within the areas, but it is unclear if and how
considerations beyond tower spacing, such as cable place-
ments, might affect access. For example, there is still a large de-
bate about the impact of cabling and cable armouring on the
ability of smaller trawl vessels to operate in the areas. Cable
tracks are expected to take multiple routes through the wind
field to create efficiencies for transmission to the main energy
grid (Srinil, 2016). These irregular cable patterns limit the ar-
eas of potentially trawlable habitat within the WEAs and add
further risk of interaction between sampling vessels and wind
energy infrastructure. Additionally, many safety and insurance
details for the vessels that might undertake this work are yet to
be settled (Hogan, 2023). Thus, it is quite possible that trawl
survey vessels will effectively be excluded from these areas.
This adds further emphasis to the question of whether a sam-
pling design for active gear can be envisioned completely out-
side the wind field areas.

An active gear like a bottom trawl has an important
advantage over other types of fisheries survey methods in
providing biological sample data that are critical to stock
assessments. Ideally, stock assessments utilize models that in-
corporate age compositions and other biological attributes of
the populations (e.g. average weight, maturity). Such models
tend to be superior to models that rely on coarser measures of
relative abundance and exclude age- or size-based informa-
tion. Hence, both scientific and commercial sampling should
collect size and age data from individual specimens (NRC,
2000). There are efforts to increase the accuracy of analytical
assessments with the inclusion of data to calibrate natural
mortality using auxiliary data of consumption by predator
species, again data dependent on the collection of specimens
for stomach contents analysis (Dorn and Barnes, 2022).
Without these data, we run the risk of having stock assess-
ments regress to index level assessments with reduced ability
to set appropriate biological reference points. Though we can
see where new telemetry methods such as active and passive
sound measurements, environmental DNA, and manned and
unmanned video recordings, among others, may provide
information on biomass levels and population trajectories,
they lack the ability to address the data deficiencies created by
the absence of specimen data (Sheaves et al., 2020; Stoeckle et
al.,2021). We would advocate for the consideration of hybrid
survey designs that can maintain the existing time series of
indicators and specimen data and be augmented by other
methods.

Use of passive gear (e.g. traps, gill nets) or telemetric gear to
monitor populations introduces other complications because
the measurements are not strictly comparable to active gear
such as trawls. In the absence of calibration experiments, it is
impossible to determine if changes in relative abundance are
due to true changes or simply different catchabilities among
gears. Passive gear relies on volitional movements of fish as
well as probabilities of entanglement and behavioural traits
(likelihood of entering a closed space, etc.). Remote sensing
gear rely on detection probabilities and ability to identify
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individuals to the species level. Without calibration experi-
ments, the use of alternative gear in WEAs will not have the
same basis of inference as trawls and the consistency of fu-
ture with past observations cannot be ensured. Applying the
same logic, future observations that are informed by samples
around the perimeter of wind areas will have greater uncer-
tainty. The effects of this uncertainty on the overall survey data
have not been quantified, but should be considered in future
research.

The NES is among the most rapidly warming ecosystems
worldwide (Pershing ef al., 2015) and has experienced regime
level change in temperature (Friedland et al., 2020), in part
due to basin-scale shifts in North Atlantic gyre circulation
(Gongalves Neto et al., 2021). Our knowledge of these envi-
ronmental changes was formed with the in-situ observations
made during ecosystem surveys (Gawarkiewicz et al., 2019)
that will have to be adapted to new sampling designs with
the installation of wind energy turbines. We have also seen
regime level change in lower (Morse et al., 2017) and up-
per (Methratta and Link, 2006) trophic level productivity and
distribution. Likewise, surveys that measure these parameters
will also have to adapt. To continue to understand what is oc-
curring in our environment, it would be desirable, or perhaps
necessary, to continue a comparative time series of the trawl
survey that formed the basis of this report. What was apparent
prior to the realization of climate change in our oceans was the
anticipatory needs for time series data (McGowan, 1990); the
landscape that defined these needs over three decades ago has
not changed and perhaps has grown more critical. Hopefully,
the data reported here will find utility in the development of
strategies to meet survey goals.
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