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T he de v elopment of wind energy on the US Northeast Continental Shelf (NES) may preclude resource-monitoring programmes from continuing 
in their original study designs. We considered the spatial requirements of energy de v elopers and the spatial autocorrelation of resident species as 
a means to inform survey mitigation. The spatial requirements of the NES wind industry were considered in respect to the delineation of settled 
lease areas. We suggest access metrics ranging from 8 to 21 km representing the interquartile range of chord distances across the settled 
lease areas. Using surv e y data and concentrating on commercial species with stock assessment requirements, we computed indices of spatial 
autocorrelation. Tests of spatial autocorrelation using Moran’s I and join counts statistics were significant ( p < 0.05) for most species, suggesting 
a high le v el of spatial correlation in their distributions. To characterize a scalar extent of spatial correlation, variograms were fit to estimate the 
ph y sical range of correlated catches. These data suggest most species were spatially correlated well beyond the distance metrics derived from 

the lease area shapes. Sampling by a range of gears has the potential of producing spatially accurate depictions of species distributions and 
abundance despite the restrictions wind lease areas may place on sampling designs. 
Keywords: fish distribution, fisheries, spatial correlation, survey design, wind energy. 
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Introduction 

In efforts to reduce global greenhouse gas loadings, there is 
expanding interest in renewable alternatives to fossil fuels.
Notable among these efforts is the development of offshore 
wind energy, owing to the consistent movement of air over 
ocean domains, thus making offshore wind a relatively reli- 
able source of energy (Li et al., 2020 ). Large-scale offshore 
wind construction projects create many and often complex 

user interactions (Copping et al., 2020 ). Among these inter- 
actions, offshore wind development can have direct effects on 

the ecosystem (Galparsoro et al., 2022 ) at the organismal level 
(e.g. bird kills) or system level effects through habitat modi- 
fications (e.g. change in lower trophic level production). In a 
broader sense, these activities affect maritime commerce and 

food security (Qu et al., 2021 ). The development of Wind En- 
ergy Areas (WEAs) not only alters patterns of harvest related 

to food security, but key to the maintenance of food security 
is the ability to monitor the condition of resource species. We 
anticipate our ability to monitor resource species will be im- 
pacted via constraints on surveys caused by WEAs (Methratta 
et al., 2020 ). Evidence from other types of management clo- 
sure areas suggests that harvesters will continue to exploit mo- 
bile species on the perimeters of such areas and we anticipate 
that harvesters will find ways to operate in WEAs with ac- 
ceptable safety levels (Schupp et al., 2021 ). Hence, regulatory 
agencies will still have a statutory responsibility of provid- 
ing assessment and management advice for these resources via 
fishery-independent surveys. 
Received: 24 March 2023; Revised: 20 July 2023; Accepted: 23 September 202
Published by Oxford University Press on behalf of International Council for the E
employee(s) and is in the public domain in the US. 
Fishery-independent surveys are conducted by research 

essels or contracted commercial fishing vessels. To ensure 
ong-term comparability of relative abundance estimates, all 
essels adhere to a rigid sampling protocol, strictly monitor 
ear performance, and most importantly, take steps to select 
tations randomly (Latour et al., 2003 ). Randomization 

f station selection is important because it allows one to
ake inferences about the total population, which consists 
f sampled and unsampled locations. When the sampling 
esign encompasses multiple habitats, refinements of the 
urvey designs can be achieved by dividing the sampling 
rea into strata. Ideally, strata reduce the overall variance of
he estimate by having greater similarities in abundance or 
pecies compositions within strata than between strata. Taken 

ollectively, these factors have made stratified random designs 
he de facto standard for fishery-independent surveys around 

he world (Doubleday, 1981 ). However, a given realization of
 stratified random design can result in very poor estimates
f the stratification is inappropriate or if stations are under-
r over-allocated to strata (Cochran, 1991 ). Random stations 
an exhibit undesirable sampling properties of being either 
oo close together or too far apart. The former is less efficient
ecause nearby samples may not be independent and the 
atter condition results in an over reliance of a single sample
epresenting a very large area (Gunderson, 1993 ). 

The introduction of WEAs into a sampling framework up- 
ets the delicate balance of stratification and spatial alloca- 
ion of samples. If the WEA cannot be sampled, the sizes and
3 
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onfigurations of strata are compromised and station alloca-
ions, whatever their basis, must be changed (Gill et al., 2020 ).

ost importantly, the critical design-based attribute, wherein
very element in the sampling frame has a non-zero inclusion
robability is now invalid. Variances are likely to increase and
stimates of the mean will be biased unless it can be shown
hat samples outside of the WEA can be used to make valid
nferences about the conditions inside the WEA. This paper
ddresses this central problem by using models to characterize
he spatial correlations among samples. These correlations can
e distilled into practical metrics of distances that define the
hysical range over which a sample can be assumed to be rea-
onably similar. In other words, a future survey design might
nclude both design and model-based properties (Dumelle et
l., 2022 ). 

The validity of this hybrid design (Brus, 2021 ) rests on the
rinciple that the correlative properties of samples estimated
n the absence of WEAs are still appropriate after the WEA
re developed. This is unknowable a priori. Detailed habitat
tudies have demonstrated differences in benthic invertebrate
ommunities relative to controls following turbine installa-
ion, but not all fish species will be affected equally (Franco
t al., 2015 ). Fish that transit WEAs rapidly are less likely to
e affected than species with affinity to the altered bottom
tructure and food resources. Hence, it is important to exam-
ne a range of species to help predict the utility of model as-
isted sampling designs (Di Biase et al., 2022 ). In this paper,
e use the term “adapted surveys” to denote survey designs

hat augment more traditional designs with information on
he spatial autocorrelation properties of fish species. Desirable
roperties of such future designs are described, but the full
ampling properties of such designs are the subject of ongoing
esearch. 

Systematic sampling designs have desirable properties of
nsuring uniform coverage over the geographic range of the
urvey domain (Brus and de Gruijter, 1997 ). Strictly speaking,
uch designs do not have design-based variances because most
f the potential samples have zero inclusion probabilities. Sys-
ematic sampling designs might be considered as a subset of
patially balanced designs (Van der Meer, 1997 ; Benedetti et
l., 2017 ). Recent theoretical advances (Stevens and Olsen,
004 ) have led to designs that have both the advantages of sys-
ematic coverage and design-based variance estimation. In this
aper, we illustrate the spatial properties of samples that could
overn the allocation of stations over a geographic domain
ith a focus on its utility for imputing abundances within ar-

as that cannot be sampled. 
One aspect of marine fish and macroinvertebrate ecology

hat may serve to make adaptive survey designs feasible is
hat their distributions tend to be spatially autocorrelated.
he ecology of fish distribution has received a great deal of
ecent attention due to distributional responses of fish to cli-
ate change (Taheri et al., 2021 ). The distribution of fish is

omplex owing to species interactions, both competitive and
redatory, life stage effects, and reproductive requirements
Ciannelli et al., 2008 ). Inference concerning spatial corre-
ation has been made based on catch data to describe dis-
ributional clusters in both time and space (Vignaux, 1996 ).
hese catch clusters suggest spatial correlation on the order
f 20 km in New Zealand hoki ( Macruronus novaezelandiae ).
sing models to describe spatial correlation with distance for
roundfish species (cod, Gadus morhua , haddock, Melanogra-
us aeglefinus ), Marquez et al. (2021) drew contrasts in the
patial correlation for species by life stage. Not surprisingly,
ariograms fit to the distribution of tuna and billfish species
uggested many large pelagic species have spatial correlations
n excess of 100 km (Kleisner et al., 2010 ). With a rich prece-
ent in the literature of both results and methodological ap-
roaches, it should be relatively straightforward to estimate
hese parameters for a broad spectrum of commercial species
hat are routinely captured in scientific surveys. 

The strategies used to allocate offshore WEAs take into ac-
ount maritime access, so consequently, wind developments
re large in the aggregate, but individual WEAs tend to be
ized on scales that are more reasonable. The primary fac-
or used to site WEAs, both in offshore and terrestrial envi-
onments, is the distribution of wind speed and air density
Rediske et al., 2021 ). Furthermore, a wide range of spatial
lanning issues are considered, especially maritime transport
ccess (Caceo ̆glu et al., 2022 ). Fundamental differences in the
pace of operation requirements between terrestrial and mar-
time transport, i.e. trucks vs. ships, ultimately limit the size of
ease areas because transit by a wide range of ship types and
lasses must occur between the boundaries of adjacent WEAs.
hough the intention is to insure safe seafood harvest within
EAs (Perry and Heyman, 2020 ), spacing between structures

f 1–2 km or less may preclude operation of large fishing ves-
els using active gear in these areas. 

The goal of this study was to examine the spatial autocorre-
ation of populations of commercially harvested and assessed
sh and macroinvertebrates in the US Northeast Continental
helf (NES) ecosystem in context to the dimensionality of indi-
idual and accessible WEAs. The physical dimensions of the
ind lease areas, distinguished from interest and call areas,
ere analysed to determine the range of sizes from naviga-
le edge to distances across the area. Species with assessments
hat include the use of bottom trawl data were analysed using
istorical data to determine the tendency for distribution to be
patially autocorrelated and to affix a distance measure to that
orrelation using spatial statistics. Our goal was to generalize
he tradeoffs between station spacing and the spatial corre-
ation among trawl species catch; hence, providing a tool to
valuate survey mitigation strategies. 

ethods 

tudy system 

his study was based on survey observations and WEA ac-
ivities in the NES. Survey observations refer to the long-term
ottom trawl-monitoring programme for fish and macroin-
ertebrates used to guide fisheries and ecosystem manage-
ent. WEA activities refer to the emergent development of
ind power in the form of wind turbines within the ecosys-

em. The Northeast Fisheries Science Center bottom trawl
urvey (Desprespatanjo et al., 1988 ) is conducted annually
n the spring and autumn seasons, and consists of ∼300 or
ore stations sampled per season. This random stratified sur-

ey started in 1963 in autumn and 1968 in spring, and sam-
les areas off the coast of North Carolina to Nova Sco-
ia; the full spatial extent of station locations are shown in
upplementary Figure S1 in the Supplementary Material. The
tudy domain was sometimes expanded with extended station
overage south of Cape Hatteras (south of 35 

◦N). We con-
trained the analysis of the trawl data to the core strata of
he survey shown in Supplementary Figure S1 . Over time, a

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad167#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad167#supplementary-data
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Figure 1. The US Northeast Shelf with decided lease areas (blue) and 
interest areas (red) being considered for wind energy development. The 
dashed line marks the 100-m depth contour. 
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number of changes in trawl gear, vessels, and trawl doors oc- 
curred. Each of these changes was accompanied by field exper- 
iments to adjust new observations to the historical time series 
(Desprespatanjo et al., 1988 ). The largest change occurred in 

2008 when the survey changed to a much larger vessel (FSV 

Bigelow). The effects of this shift were fully calibrated as de- 
scribed in Miller et al. (2010) . The transition to the Bigelow 

further reduced the spatial domain of the survey because 
shallower inshore stations could no longer be safely sam- 
pled. Survey activities were disrupted by the COVID-19 epi- 
demic in 2020, so we restricted our analyses to years prior to 

2020. 
The NES is also a leading region for the development of 

offshore wind energy in the United States, with many wind 

lease areas already identified. Procedurally, the development 
of lease areas is preceded by the identification of call and in- 
terest areas that may eventually provide the basis for lease ar- 
eas. The boundaries for these areas are rapidly changing and 

as of the writing of this paper, based on data for March 2023,
there are nearly 30 call and interest areas, with some overlap- 
ping areas, and 26 lease areas ( Figure 1 ). As can be seen in the 
map, call and interest areas tend to be larger than what even- 
tually emerge as a lease area. Multiple factors go into the des- 
ignation of a lease area, but currently, lease areas have at least 
one side that is open to navigation. The current lease areas 
are listed in Table 1 along with their areal coverage in square 
kilometers. The areas range from ∼9 to 586 km 

2 ; however,
the shapes vary from rectangular to triangular. To character- 
ize the size of the lease areas, we calculated a family of chord 

distances across an area based on all combinations of vertices 
of the outline shape. Depending on the complexity of the lease 
area shape, the number of chords ranged from 72 to 43056.
The distribution of the chord distances was summarized with 

the median and lower and upper quartiles. The means of these 
statistics, 8, 14, and 21 km, were use as benchmark distances 
to evaluate the spatial statistics calculated from the bottom 

trawl survey. 
easures of spatial correlation in the survey catch 

e characterized the spatial correlation pattern in the sur- 
ey catches (abundance or catch in numbers) of each fish and
acroinvertebrate species for each year and season (spring 

nd autumn), restricting the analysis to managed species that 
tilize the bottom trawl survey data for their assessments 
 Table 2 ). In a practical sense, some species are well repre-
ented in the survey and the data serve as a major part of the
ssessment; whereas, some species are rare occurrences in the 
urvey and thus, the survey plays a minor role. To test for spa-
ial autocorrelation, we calculated Moran’s Index (Moran’s 
 ) of global autocorrelation (Gittleman and Kot, 1990 ) using
he “ape” package in R (version 5.7). For each species, we
omputed Moran’s I by year and season and summarized the
tatistic as the proportion of years with significant values (sig-
ificance at p = 0.05). Significant and positive tests led to re-
ection of the null hypothesis that the underlying distribution 

as random and supported the hypothesis of spatial cluster- 
ng. We also examined spatial correlation among the absence 
nd presence data for each species using join count tests (Sokal
nd Oden, 1978 ). Absence or presence was coded into each
ata record as a factor and the test statistic was calculated
sing the “spdep” package in R (version 1.2–8). The statistic 
ested for spatial autocorrelation between absences and pres- 
nces in the data; we concentrated on the results of presence
ests. 

We used a Kriging interpolation procedure to estimate the 
istance over which catch was correlated for each species. For
pecies by year and season, we fit a variogram and used the
ange from the fit as an estimate of the linear distance of
atch correlation. We first specified the variogram as the log-
rithm of catch plus one (to account for zero catch) using the
gstat” package in R (version 2.0–9). We then used the var-
ogram fitting procedure, also in “gstat”, that fit Kappa and
elected the best fit variogram model (Pebesma, 2004 ). For
ome species and years, there were range estimates from the
ariogram fits that were off scale and had to be considered
utliers. These values were identified using the boxplot com- 
and in R base graphics; they were excluded from the data

ummaries. The range estimates were characterized as means 
nd quantile summaries (10–90% quantiles, 25–75% quan- 
iles, and median) by species and season. 

utative interaction of sample grid size and range 

orrelation 

he effect of putative grid size and correlation distance were
onsidered simultaneously by mapping grids at two spacings 
nd evaluating the effect of the grids by overlaying circles with
arying diameters based on different correlation lengths. We 
onsidered two grid spacings, 0.333 and 0.5 

◦, with the for-
er at approximately the same spacing as the trawl stations

n the current bottom trawl survey and resulting in ∼290 sta-
ions in a seasonal survey. The latter represents a relaxation
f survey station spacing and would likely result in ∼120
rawl stations over the survey area. However, we believe a re-
axed survey may be necessitated if spatial access is restricted
y WEA development. For each of the spacing scenarios, cir-
les were added at the grid locations with diameters of 10,
0, 30, and 40 km meant to simulate the extent of species
atch correlation. The intention here is to generalize the 
radeoffs between station spacing and the spatial correlation 

mong trawl species catch; hence, developing a set of tools to
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Table 1. List of US Northeast Shelf wind energy lease areas shown in Figure 1 with their areas, and medians (50%) and quartile intervals (25 and 75%) 
of the chord lengths of the lease area shapes. 

Chord length 

Area 25% 50% 75% 

Project km 

2 km km km 

Bay State Wind LLC 586 11 19 31 
Vineyard Northeast LLC 536 9 16 25 
Beacon Wind LLC 522 12 17 26 
SouthCoast Wind Energy LLC 516 12 17 26 
Community Offshore Wind, LLC 510 11 18 23 
Avangrid Renewables, LLC 495 9 17 27 
Virginia Electric and Power Company 457 8 15 23 
Sunrise Wind, LLC 445 9 15 24 
Atlantic Shores Offshore Wind Projects 1 & 2, LLC’s 413 9 16 21 
Park City Wind LLC 411 10 16 22 
Orsted North America Inc. 344 5 10 14 
Attentive Energy LLC 341 9 14 19 
Invenergy Wind Offshore LLC 340 10 14 20 
Revolution Wind, LLC 339 8 13 19 
Atlantic Shores Offshore Wind, LLC 328 8 15 25 
US Wind Inc. 323 9 14 19 
Atlantic Shores Offshore Wind Bight, LLC 321 9 15 20 
Empire Offshore Wind, LLC 321 9 16 25 
Ocean Wind LLC 306 7 13 18 
Bluepoint Wind, LLC 289 8 14 18 
GSOE I, LLC 284 8 14 17 
Vineyard Wind 1 LLC 264 7 14 17 
Mid-Atlantic Offshore Wind LLC 174 7 10 14 
Skipjack Offshore Energy, LLC 107 5 8 11 
South Fork Wind, LLC 55 3 5 7 
Cmlth of Virginia, Dept. of Mines, Minerals, and Energy 9 5 16 29 

Mean 347 8 14 21 

Table 2. List of species that to some measure rely on bottom trawl survey data in their assessment process, SVSPP code is the primary database code 
used in the trawl database and is provided to facilitate species identification in other figures. 

SVSPP SVSPP 
Common name Scientific name Code Common name Scientific name Code 

Spiny dogfish Squalus acanthias 15 Witch flounder Gl yptocephalus c ynoglossus 107 
Barndoor skate Dipturis laevis 22 Windowpane flounder Scophthalmus aquosus 108 
Winter skate Leucoraja ocellata 23 Atlantic mackerel Scomber scombrus 121 
Clearnose skate Raja eglanteria 24 Butterfish Peprilus triacanthus 131 
Rosette skate Leucoraja garmani 25 Bluefish Pomatomus saltatrix 135 
Little skate Leucoraja erinacea 26 Black sea bass Centropristis striata 141 
Smooth skate Malacoraja senta 27 Scup Stenotomus chrysops 143 
Thorny skate Amblyr aja r adiata 28 Golden tilefish Lopholatilus chamaeleonticeps 151 
Atlantic herring Clupea harengus 32 Acadian redfish Sebastes fasciatus 155 
Alewife Alosa pseudoharengus 33 Atlantic wolffish Anarhichas lupus 192 
Blueback herring Alosa aestivalis 34 Ocean pout Zoarces americanus 193 
American shad Alosa sapidissima 35 Monkfish Lophius americanus 197 
Silver hake Merluccius bilinearis 72 American lobster Homarus americanus 301 
Atlantic cod Gadus morhua 73 Northern shrimp Pandalus borealis 306 
Haddock Melanogrammus aeglefinus 74 Deep sea red crab Chaceon quinquedens 310 
Pollock Pollachius virens 75 Jonah crab Cancer borealis 312 
White hake Urophycis tenuis 76 Atlantic sturgeon Acipenser oxyrinchus oxyrinchus 380 
Red hake Urophycis chuss 77 Atlantic sea scallops Placopecten magellanicus 401 
Cusk Brosme brosme 84 Atlantic surfclam Spisula solidissima 403 
Atlantic halibut Hippoglossus hippoglossus 101 Ocean quahog Arctica islandica 409 
American plaice Hippoglossoides platessoides 102 Illex squid Illex spp. 502 
Summer flounder Paralichthys dentatus 103 Longfin squid Doryteuthis (Amerigo) pealeii 503 
Yellowtail flounder Limanda ferruginea 105 Blueline tilefish Caulolatilus microps 621 
Winter flounder Pseudopleuronectes americanus 106 
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Table 3. The number of years in which there were sufficient data to estimate a variogram range (Range, which is also the number of years Moran’s I test 
was estimated) for each study species. 

The number of years of range data after outlier removals (Outliers). Number of years a Join Count estimate of absences and presents could be estimated 
(Absence and Presence, respectively). Shading added to emphasize range in values. 
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evaluate survey adaptation and mitigation of encroachment 

issues. To add further context, these putative grids were over- 
laid on the currently established lease areas to illustrate the 
feasibility of rudimentary gridded survey designs. 

Results 

Performance statistics for species 

Measures of spatial correlation for each species were esti- 
mated over all the years and seasons of the bottom trawl 
urvey time series. The combined total for both seasonal sur-
eys was 109 years and for 47 taxa resulting in 5123 sta-
istical estimates ( Table 2 ). In the spring, only 35 of the 47
pecies had sufficient data to calculate the indices in all 52
ears of the spring time series; that figure is even lower in
he autumn where 32 species had sufficient data in the 57-
ear time series ( Table 3 ). Data availability issues primarily
ffected Atlantic surfclam ( Spisula solidissima ), Ocean qua- 
og ( Arctica islandica ), and Blueline tilefish ( Caulolatilus mi-
rops ), none of which are effectively sampled by the bottom
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Figure 2. The distribution of annual Moran’s I test statistics sorted by species based on the mean of spring and autumn significant positive test results 
for spring (a) and autumn (b). Blue symbols indicate significant tests; red symbols indicate non-significant tests. 
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rawl gear. It is worth noting that surfclam is the subject of
nother dedicated survey. Of those season and species com-
inations, ∼9% of the data were eliminated as outliers with
alues generally ranging between 0 to 11 years eliminated for
 given taxon. 

oran’s I 

or most species, Moran’s I was significant and positive in
alue in the majority of survey years, indicating a tendency
or the distribution of species to be spatially autocorrelated.
n most years, there were sufficient data to calculate Moran’s
 , notably there were low numbers of years for Atlantic sur-
clam, ocean quahog, and blueline tilefish ( Table 3 ). Overall,
n spring, only 8% of the Moran I statistics were negative
n sign, and of those negative tests, only 8% were significant
 Figure 2 a). The balance of the test statistics were positive
n sign and among these tests, 93% were significant. The
tatistics were patterned similarly in the autumn where 9%
f the tests were negative, of which 4% were significant tests,
hereas among positive test statistics, 94% were significant

 Figure 2 b). The preponderance of significant positive test
tatistics in both seasons suggest most species distribute with
ositive spatial autocorrelation; however, noting that for
ome species the sample size is inadequate to come to any
onclusion. 

oin count test 

he join count test for spatial autocorrelation among presence
ocations for the survey species indicated a tendency towards
patial autocorrelation. In spring, 93% of the join tests for
resence spatial autocorrelation were significant ( Figure 3 a).
he non-significant tests were distributed over a number of
pecies. Of the taxa with a high proportion of non-significant
ests (Deep sea red crab, ocean quahog, blueline tilefish, At-
antic sturgeon, and Atlantic surfclam), only red crab had test
tatistics for most years of the time series. In autumn, the per-
entage of significant tests was the same as in spring, 93%
 Figure 3 b). Similar to the spring, those species with a high
roportion of non-significant tests are the same as the spring
ith the addition of Golden Tilefish and the only taxon with
 test statistic in most years was red crab. Using a contrasting
pproach to Moran’s I , the join count statistics also indicate
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Figure 3. The distribution of join count test of spatial correlate of presence locations, sorted by species based on the mean of spring and autumn 
significant positive test results (from Figure 2 ) for spring (a) and autumn (b). Blue symbols indicate significant tests; red symbols indicate non-significant 
tests. 
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a high degree of spatial autocorrelation among species distri- 
butions. 

Variogram range 

Estimates of variogram range generally exceeded the measures 
of access to the lease areas based on the distribution of lease 
area chord distances. The mean of the range estimates over 
the study period by species spanned values from 46 to 702 km 

( Figure 4 ). The rank ordering of the means suggest the small- 
est ranges were realized for sea scallops ( Placopecten magel- 
lanicus ) at 58 and 48 km for the spring and autumn survey,
respectively. The highest ranges were observed for ocean qua- 
hog at 85 and 702 km for the spring and autumn survey, re- 
spectively. Over all taxa, all mean range estimates exceeded the 
upper quartile of chord lengths of 21 km by at least a factor of 
two. The lower extent of the confidence intervals of range esti- 
mates were < 21 km for three taxa including blueline tilefish in 

the spring and Atlantic surfclam and ocean quahog in the au- 
tumn. These data generally had right-hand skewness in their 
distribution, hence, the mean tended to be much greater than 

the median. To address this issue, the range data were also 

presented as quantiles and median scores. In the spring, the 
edians of range spanned 18 to 284 km, which is markedly
ess than suggested by the mean of the ranges ( Figure 5 ).
hough the medians met or exceeded the chord distance 
enchmarks, many species had 10–90 and 25–75% quantile 
anges that were less than these reference distances. A simi-
ar result was realized with the autumn data, with the median
panning values from 17 to 306 km and many species with
uantile ranges below the reference distances ( Figure 6 ). The
erformance of some species was not equivalent between sea- 
ons. For example, the lowest autumn median was observed in
tlantic surfclam; however, in spring, surfclam had a median 

f 52 km, noting that this species is not well sampled by the
urvey gear. In other taxa, some of which were specifically tar-
eted by the trawl gear, seasonal medians were consistent; for
xample, the spring median for Atlantic cod ( Gadus morhua )
as 88 km vs. an autumn median of 100 km. 

utative interaction of sample grid size and range 

orrelation 

he interactive effects of sample grid spacing and the likely
patial coverage of samples suggested some general principles 
hat may be helpful in the consideration of a wide variety of
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Figure 4. Mean variogram ranges (black line) and 95% CI (blue) by 
species sorted by mean range for spring (a) and autumn (b). Range 
references of 8, 14, and 21 km (mean of quartile statistics of lease area 
chord distances) are added as dashed lines. 
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esource monitoring approaches. We selected a sampling grid
t a spacing of 0.333 

◦ that approximates the station density
f the current bottom trawl survey. With this grid spacing, if
apture at a grid location has a spatial correlation of at least
0 km, the grid results in overlapping effectiveness of neigh-
ouring samples. This statement is supported by comparing
he coverages over a 0.333 

◦ grid given spatial correlation dis-
ances of 10, 20, 30, and 40 km ( Figure 7 a). With a sampling
rid spaced at 0.5 

◦, the spatial correlation assumed for species
ould have to be closer to 30 km to achieve a similar level of

ample coverage and station overlap ( Figure 7 b). Given the
ange estimates for the species considered in this study, either
rid spacing would seem to offer a viable alternative for data
ollection by trawl gear or other types of survey telemetry.
ence, for a putative sampling grid of 0.333 

◦, there is suffi-
ient spacing suggested by the lease areas designated thus far
o locate extra-lease area sampling within each grid member
 Figure 7 c). This is also true for a sample grid of 0.5 

◦, afford-
ng even greater flexibility for the location of survey stations.
his rudimentary exercise suggests the potential feasibility for
 grid design with the requirement of one sample per grid
quare, either assigned in a fixed location or with some de-
ree of randomization. 

iscussion 

he range or distance of survey catch correlation as char-
cterized with variogram model fits suggests spatial correla-
ion far exceeds the general dimensions of offshore WEAs for
pecies dependent on bottom trawl data for assessment pur-
oses. This suggests that sampling in proximity to the WEAs
ay be a suitable substitute indicative of the WEA habitat

or species with high spatial autocorrelation. Underlying this
eneral conclusion is the idea that species have patch size dy-
amics associated with their distribution (Jentsch and White,
019 ). These patch-sizes can be relatively small or localized to
ne scale physical structures (Deza and Anderson, 2010 ), or
xist over relatively large ocean domains (Filous et al., 2022 ).
ur estimates of spatial autocorrelation suggest a range of
atch sizes for the study species of tens to over 100 km, which
ay be limited by the extents of the survey area itself. If other

egions were included in the sampling range, many taxa pre-
ented here may have a larger range of spatial correlation. For
xample, it is likely that haddock would have a much larger
ange of correlation due to their distribution in Canadian wa-
ers if the Scotian Shelf were included as part of the study
rea. Though the basis of our conclusions concerning spatial
orrelation may, if anything, be conservative, they would ap-
ear to be more than adequate to address the issues raised in
he analysis concerning the spatial scales of wind field sample
xclusion and species catch correlation. 

We anticipate two spatial scales of habitat alteration caused
y WEA development. At the local scale of tens to hundreds
f metres, benthic habitat modification is expected at the base
f turbines, in the scour protection zone, and surrounding
ediments. Altered patterns of sediment organic content, ben-
hic community composition, and finfish community structure



Trawl surveys and wind energy infrastructure 9 

Figure 6. A ut umn v ariogram ranges plotted o v er 10–90% quantiles (light 
red), 25–75% quantiles (dark red), and medians (black line) sorted by 
range median. Range references of 8, 14, and 21 km (mean of quartile 
statistics of lease area chord distances) are added as dashed lines. 

 

 

o  

a
t

 

t  

F  

(  

s  

t  

c
m  

b  

a  

t  

fi  

g  

e  

f
e
d  

b  

s  

T  

p  

s
 

a
p
a
c
t
t  

r
t
c  

2  

a
m
s
f  

W  

m  

t
s  

s
u
i  

t  

t  

a  

s  

i
m

 

m
t
s  

i
d
g  

w
(
g

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsad167/7337020 by guest on 02 N

ovem
ber 2023
have been observed at this scale in Europe where installations 
have been in place for many years (Coates et al., 2014 ; De- 
graer et al., 2020 ; Buyse et al., 2022 ; Coolen et al., 2022 ).
Effects of electromagnetic fields (EMFs), chemical contam- 
inants, construction and operational noise, substrate vibra- 
tion, particle motion, and entrainment within offshore cool- 
ing substations also emerge at this scale (Kirchgeorg et al.,
2018 ; Hutchison et al., 2020 ; Mooney et al., 2020 ; Tougaard 

et al., 2020 ; Hawkins et al., 2021 ). It is important to remem- 
ber that many frequently caught species orient to structures 
like a wind tower foundation. Black Sea Bass ( Centropristis 
striata ) are known to orient to other structures in the NES en- 
vironment (wrecks and artificial reefs). To characterize these 
sorts of changes, specific assessments are needed to address 
the newly created habitat. Gears such as bottom trawls have 
limited utility in monitoring these habitats; instead, point ob- 
servations such as video or those made using scuba would be 
required. 

Mesoscale effects in the water column caused by turbulence 
associated with the structures as well as interactions between 

atmospheric wind wake and physical oceanography processes 
are also anticipated (Dorrell et al., 2022 ). These interactions 
may affect primary productivity , transparency , thermal distri- 
bution, larval distribution, etc. and would operate over scales 
of tens of kilometres, thus extending beyond the boundaries 
of wind energy projects (Christiansen et al., 2022 ; Daewel et 
al., 2022 ). These latter effects form the basis for any ratio- 
nale to apply the findings made in this study; since the range 
f spatial correlation exceeds the chord distances of WEA
ccess, sampling by any gear should have relevance beyond 

he constraints created by any wind field sample exclusions. 
Given the spacing of wind energy towers, we know that

he bottom trawl survey vessels currently in use, such as the
SV Henry B. Bigelow, will be unable to operate within WEAs
Hare et al., 2022 ). Smaller trawl survey vessels operated by
tate and federal agencies or other groups may be able to con-
inue to sample within the areas, but it is unclear if and how
onsiderations beyond tower spacing, such as cable place- 
ents, might affect access. For example, there is still a large de-
ate about the impact of cabling and cable armouring on the
bility of smaller trawl vessels to operate in the areas. Cable
racks are expected to take multiple routes through the wind
eld to create efficiencies for transmission to the main energy
rid (Srinil, 2016 ). These irregular cable patterns limit the ar-
as of potentially trawlable habitat within the WEAs and add
urther risk of interaction between sampling vessels and wind 

nergy infrastructure. Additionally, many safety and insurance 
etails for the vessels that might undertake this work are yet to
e settled (Hogan, 2023 ). Thus, it is quite possible that trawl
urvey vessels will effectively be excluded from these areas.
his adds further emphasis to the question of whether a sam-
ling design for active gear can be envisioned completely out-
ide the wind field areas. 

An active gear like a bottom trawl has an important
dvantage over other types of fisheries survey methods in 

roviding biological sample data that are critical to stock 

ssessments. Ideally, stock assessments utilize models that in- 
orporate age compositions and other biological attributes of 
he populations (e.g. average weight, maturity). Such models 
end to be superior to models that rely on coarser measures of
elative abundance and exclude age- or size-based informa- 
ion. Hence, both scientific and commercial sampling should 

ollect size and age data from individual specimens (NRC,
000 ). There are efforts to increase the accuracy of analytical
ssessments with the inclusion of data to calibrate natural 
ortality using auxiliary data of consumption by predator 

pecies, again data dependent on the collection of specimens 
or stomach contents analysis (Dorn and Barnes, 2022 ).

ithout these data, we run the risk of having stock assess-
ents regress to index level assessments with reduced ability

o set appropriate biological reference points. Though we can 

ee where new telemetry methods such as active and passive
ound measurements, environmental DNA, and manned and 

nmanned video recordings, among others, may provide 
nformation on biomass levels and population trajectories,
hey lack the ability to address the data deficiencies created by
he absence of specimen data (Sheaves et al., 2020 ; Stoeckle et
l., 2021 ). We would advocate for the consideration of hybrid
urvey designs that can maintain the existing time series of
ndicators and specimen data and be augmented by other 
ethods. 
Use of passive gear (e.g. traps, gill nets) or telemetric gear to
onitor populations introduces other complications because 

he measurements are not strictly comparable to active gear 
uch as trawls. In the absence of calibration experiments, it is
mpossible to determine if changes in relative abundance are 
ue to true changes or simply different catchabilities among 
ears. Passive gear relies on volitional movements of fish as
ell as probabilities of entanglement and behavioural traits 

likelihood of entering a closed space, etc.). Remote sensing 
ear rely on detection probabilities and ability to identify 
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Figure 7. P utativ e sample grid spacing and influence or co v erage circles based on spacing of 0.333 ◦ with circles of 10, 20, 30, and 40 km diameter (a) 
and based on spacing of 0.5 ◦ (b). A putative 0.333 ◦ grid with lease areas shown in red (c) and a putative 0.5 ◦ grid (d). 
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ndividuals to the species level. Without calibration experi-
ents, the use of alternative gear in WEAs will not have the

ame basis of inference as trawls and the consistency of fu-
ure with past observations cannot be ensured. Applying the
ame logic, future observations that are informed by samples
round the perimeter of wind areas will have greater uncer-
ainty. The effects of this uncertainty on the overall survey data
ave not been quantified, but should be considered in future
esearch. 

The NES is among the most rapidly warming ecosystems
orldwide (Pershing et al., 2015 ) and has experienced regime

evel change in temperature (Friedland et al., 2020 ), in part
ue to basin-scale shifts in North Atlantic gyre circulation
Gonçalves Neto et al., 2021 ). Our knowledge of these envi-
onmental changes was formed with the in-situ observations
ade during ecosystem surveys (Gawarkiewicz et al., 2019 )

hat will have to be adapted to new sampling designs with
he installation of wind energy turbines. We have also seen
egime level change in lower (Morse et al., 2017 ) and up-
er (Methratta and Link, 2006 ) trophic level productivity and
istribution. Likewise, surveys that measure these parameters
ill also have to adapt. To continue to understand what is oc-

urring in our environment, it would be desirable, or perhaps
ecessary, to continue a comparative time series of the trawl
urvey that formed the basis of this report. What was apparent
rior to the realization of climate change in our oceans was the
nticipatory needs for time series data (McGowan, 1990 ); the
andscape that defined these needs over three decades ago has
ot changed and perhaps has grown more critical. Hopefully,
he data reported here will find utility in the development of
trategies to meet survey goals. 
 c kno wledg ements 

e thank the dedicated scientists responsible for the collection
f the bottom trawl survey time series since its inception. 

upplementary data 

upplementary material is available at the ICESJMS online
ersion of the manuscript. 

onflict of interest 

he authors declare no conflicts of interest. 

unding 

his work was not supported by any specific funding source. 

uthor contributions 

F conceived of the project and developed initial data analy-
is. All authors contributed to manuscript drafting and edits. 

ata availability 

he data used to describe the wind energy areas in the
ES were obtained from the Bureau of Ocean Energy Man-

gement (BOEM). https://www.boem.gov/renewable-energy/
apping- and- data/renewable- energy- gis- data . The data from

he Northeast Fisheries Science Center bottom trawl survey is

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsad167#supplementary-data
https://www.boem.gov/renewable-energy/mapping-and-data/renewable-energy-gis-data


Trawl surveys and wind energy infrastructure 11 

 

 

 

 

 

 

 

D  

 

 

 

D  

 

D  

 

F  

 

 

F  

 

 

F  

 

 

G  

 

G  

 

 

G  

 

G  

G  

 

G  

H  

 

 

 

H  

 

 

H  

H  

J  

K  

 

K  

L  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsad167/7337020 by guest on 02 N

ovem
ber 2023
available via the World Wide Web, spring data https://www. 
fisheries.noaa.gov/ inport/item/ 22561 and fall data https://ww 

w.fisheries.noaa.gov/ inport/item/ 22560 . 
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